Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 246: 112298, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379767

RESUMO

Over the last decades, much effort has been devoted to the construction of protein and peptide-based metalloporphyrin catalysts capable of promoting difficult transformations with high selectivity. In this context, mechanistic studies are fundamental to elucidate all the factors that contribute to catalytic performances and product selectivity. In our previous work, we selected the synthetic peptide-porphyrin conjugate MnMC6*a as a proficient catalyst for indole oxidation, promoting the formation of a 3-oxindole derivative with unprecedented selectivity. In this work, we have evaluated the role of the metal ion in affecting reaction outcome, by replacing manganese with iron in the MC6*a scaffold. Even though product selectivity is not altered upon metal substitution, FeMC6*a shows a lower substrate conversion and prolonged reaction times with respect to its manganese analogue. Experimental and theoretical studies have enabled us to delineate the reaction free energy profiles for both catalysts, indicating different thermodynamic limiting steps, depending on the nature of the metal ion.


Assuntos
Metaloporfirinas , Manganês , Metais , Oxirredução , Peptídeos , Catálise
2.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175773

RESUMO

The development of artificial enzymes for application in sustainable technologies, such as the transformation of environmental pollutants or biomass, is one of the most challenging goals in metalloenzyme design. In this work, we describe the oxidation of mono-, di-, tri- and penta-halogenated phenols catalyzed by the artificial metalloenzyme Fe-MC6*a. It promoted the dehalogenation of 4-fluorophenol into the corresponding 1,4-benzoquinone, while under the same experimental conditions, 4-chloro, 4-bromo and 4-iodophenol were selectively converted into higher molecular weight compounds. Analysis of the 4-chlorophenol oxidation products clarified that oligomers based on C-O bonds were exclusively formed in this case. All results show that Fe-MC6*a holds intriguing enzymatic properties, as it catalyzes halophenol oxidation with substrate-dependent chemoselectivity.


Assuntos
Peroxidase , Peroxidases , Peroxidases/metabolismo , Oxirredução , Catálise
3.
J Med Chem ; 66(3): 1790-1808, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36696678

RESUMO

Sanfilippo syndrome comprises a group of four genetic diseases due to the lack or decreased activity of enzymes involved in heparan sulfate (HS) catabolism. HS accumulation in lysosomes and other cellular compartments results in tissue and organ dysfunctions, leading to a wide range of clinical symptoms including severe neurodegeneration. To date, no approved treatments for Sanfilippo disease exist. Here, we report the ability of N-substituted l-iminosugars to significantly reduce substrate storage and lysosomal dysfunctions in Sanfilippo fibroblasts and in a neuronal cellular model of Sanfilippo B subtype. Particularly, we found that they increase the levels of defective α-N-acetylglucosaminidase and correct its proper sorting toward the lysosomal compartment. Furthermore, l-iminosugars reduce HS accumulation by downregulating protein levels of exostosin glycosyltransferases. These results highlight an interesting pharmacological potential of these glycomimetics in Sanfilippo syndrome, paving the way for the development of novel therapeutic approaches for the treatment of such incurable disease.


Assuntos
Mucopolissacaridose III , Humanos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Heparitina Sulfato/metabolismo , Lisossomos/metabolismo , Fibroblastos/metabolismo , Neurônios/metabolismo
4.
Eur J Med Chem ; 241: 114618, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35933787

RESUMO

Herein we report the synthesis, conformational analysis and the evaluation of the antiviral activity of six-membered nucleoside analogues having a piperidine ring as the preorganized (deoxy)ribose bioisostere. Mutagenic nucleobase-containing nucleosides 1 and 2 were obtained by appropriate manipulation of the well-known glycomimetic agent deoxynojirimycin as easily accessible starting material. In vitro assays revealed activity of 5-iododeoxyuridine analogue 1 against all DNA viruses tested. As suggested by DFT analysis and pH-dependent NMR experiments, antiviral activity was correlated to the biomimetic character of the piperidine ring, as it is able to resemble the deoxyribose conformations adopted by natural nucleosides when interacting with viral enzymes.


Assuntos
Antivirais , Nucleosídeos , Antivirais/química , Biomimética , Conformação Molecular , Nucleosídeos/química , Piperidinas
5.
RSC Adv ; 12(21): 12947-12956, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35527726

RESUMO

The miniaturized metalloenzyme Fe(iii)-mimochrome VI*a (Fe(iii)-MC6*a) acts as an excellent biocatalyst in the H2O2-mediated oxidative dehalogenation of the well-known pesticide and biocide 2,4,6-trichlorophenol (TCP). The artificial enzyme can oxidize TCP with a catalytic efficiency (k cat/K TCP m = 150 000 mM-1 s-1) up to 1500-fold higher than the most active natural metalloenzyme horseradish peroxidase (HRP). UV-visible and EPR spectroscopies were used to provide indications of the catalytic mechanism. One equivalent of H2O2 fully converts Fe(iii)-MC6*a into the oxoferryl-porphyrin radical cation intermediate [(Fe(iv)[double bond, length as m-dash]O)por˙+], similarly to peroxidase compound I (Cpd I). Addition of TCP to Cpd I rapidly leads to the formation of the corresponding quinone, while Cpd I decays back to the ferric resting state in the absence of substrate. EPR data suggest a catalytic mechanism involving two consecutive one-electron reactions. All results highlight the value of the miniaturization strategy for the development of chemically stable, highly efficient artificial metalloenzymes as powerful catalysts for the oxidative degradation of toxic pollutants.

6.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809603

RESUMO

The de novo synthesis of piperidine nucleosides from our homologating agent 5,6-dihydro-1,4-dithiin is herein reported. The structure and conformation of nucleosides were conceived to faithfully resemble the well-known nucleoside drugs Immucillins H and A in their bioactive conformation. NMR analysis of the synthesized compounds confirmed that they adopt an iminosugar conformation bearing the nucleobases and the hydroxyl groups in the appropriate orientation.


Assuntos
Adenina/análogos & derivados , Adenosina/análogos & derivados , Nucleosídeos/química , Piperidinas/química , Nucleosídeos de Purina/química , Pirimidinonas/química , Pirrolidinas/química , Adenina/química , Adenosina/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Relação Estrutura-Atividade
7.
Eur J Drug Metab Pharmacokinet ; 46(1): 119-128, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33089470

RESUMO

BACKGROUND AND OBJECTIVES: UPARANT has emerged as a novel therapeutic agent with the potential to treat ocular diseases as assessed by studies in animal models. Since limited information is available on the pharmacokinetics of UPARANT, the aim of this study is to evaluate its pharmacokinetics after single and multiple ascending dose (SAD and MAD) administration in rats. METHODS: Male (n = 27) and female (n = 27) Sprague-Dawley rats were divided into six groups (n = 9/sex/group). UPARANT was administered via subcutaneous injection as single (10, 50 or 100 mg/kg; day 1) and multiple (10, 50 or 100 mg/kg/day; 7 consecutive days; day 7) dosing. Blood samples were collected on day 1 (pre-dose, 0.5, 1, 2, 4, 8 and 24 h post dose) and day 7 (pre-dose, 0.5, 1, 2, 4, 8, 24, 48 and 192 h post dose). The plasma concentration of UPARANT was determined by a validated liquid chromatography mass spectrometry method. RESULTS: The plasma concentration-time profiles of UPARANT were similar in SAD and MAD administration in both male and female rats. The compound reached maximum plasma concentration (Cmax) at 1-2 h with a slow apparent plasma clearance and a moderate apparent volume of distribution. Moreover, SAD administration revealed a non-proportional increase in Cmax and in the area under the plasma concentration-time curve (AUCinf), whereas a dose-proportional increase in AUCinf was shown after MAD administration. Regarding the extent of accumulation, the data suggest negligible accumulation of the compound after multiple administrations. CONCLUSION: The pharmacokinetics of UPARANT were not sex-related, and there was negligible accumulation in plasma after 7 days of treatment. However, the compound exhibited no dose-proportional pharmacokinetics after single and multiple ascending subcutaneous dosing.


Assuntos
Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
8.
Mar Drugs ; 18(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228211

RESUMO

In the effort to improve the antimicrobial activity of iminosugars, we report the synthesis of lipophilic iminosugars 10a-b and 11a-b based on the one-pot conjugation of both enantiomeric forms of N-butyldeoxynojirimycin (NBDNJ) and N-nonyloxypentyldeoxynojirimycin (NPDNJ) with cholesterol and a succinic acid model linker. The conjugation reaction was tuned using the established PS-TPP/I2/ImH activating system, which provided the desired compounds in high yields (94-96%) by a one-pot procedure. The substantial increase in the lipophilicity of 10a-b and 11a-b is supposed to improve internalization within the bacterial cell, thereby potentially leading to enhanced antimicrobial properties. However, assays are currently hampered by solubility problems; therefore, alternative administration strategies will need to be devised.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Imino Açúcares/síntese química , Imino Açúcares/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade
9.
Antibiotics (Basel) ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604791

RESUMO

Staphylococcus aureus is one of the major causes of hospital- and community-associated bacterial infections throughout the world, which are difficult to treat due to the rising number of drug-resistant strains. New molecules displaying potent activity against this bacterium are urgently needed. In this study, d- and l-deoxynojirimycin (DNJ) and a small library of their N-alkyl derivatives were screened against S. aureus ATCC 29213, with the aim to identify novel candidates with inhibitory potential. Among them, N-nonyloxypentyl-l-DNJ (l-NPDNJ) proved to be the most active compound against S. aureus ATCC 29213 and its clinical isolates, with the minimum inhibitory concentration (MIC) value of 128 µg/mL. l-NPDNJ also displayed an additive effect with gentamicin and oxacillin against the gentamicin- and methicillin-resistant S. aureus isolate 00717. Sub-MIC values of l-NPDNJ affected S. aureus biofilm development in a dose-dependent manner, inducing a strong reduction in biofilm biomass. Moreover, real-time reverse transcriptase PCR analysis revealed that l-NPDNJ effectively inhibited at sub-MIC values the transcription of the spa, hla, hlb and sea virulence genes, as well as the agrA and saeR response regulator genes.

10.
Drug Discov Today ; 25(8): 1528-1534, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32562843

RESUMO

Here, we highlight recent findings on the urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system that suggest its potential role as a main orchestrator of fatal progression to pulmonary, kidney, and heart failure in patients with coronavirus. Patients with prolonged background inflammation can present aberrant inflammatory reactions, well recognized as the main factors that can result in death and probably sustained by a dysregulated uPA/uPAR system. SuPAR, the soluble form of uPAR, represents a biomarker of disease progression, and its levels correlate well with comorbidities associated with the death of patients with coronavirus. New drugs that regulate the uPA/uPAR system could help treat the severe complications of highly pathogenic human coronaviruses (hCoVs), including pandemic coronavirus 2019 (COVID-19).


Assuntos
Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/fisiopatologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Biomarcadores/metabolismo , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Progressão da Doença , Desenvolvimento de Medicamentos , Humanos , Inflamação/fisiopatologia , Inflamação/virologia , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Fatores de Risco
11.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397443

RESUMO

Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.


Assuntos
Fibrose Cística/tratamento farmacológico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosiltransferases/antagonistas & inibidores , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Imino Piranoses/química , Imino Piranoses/uso terapêutico , Inflamação , Estrutura Molecular , Mutação , Deleção de Sequência , Tartaratos/química , Tartaratos/uso terapêutico
12.
Chemistry ; 26(43): 9589-9597, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32363791

RESUMO

The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.


Assuntos
Anticoagulantes/química , Aptâmeros de Nucleotídeos/química , Álcoois Açúcares/química , Trombina/química , Humanos , Relação Estrutura-Atividade
13.
Microorganisms ; 8(4)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218320

RESUMO

In this work, the antibacterial activity of deflazacort and several of its synthetic precursors was tested against a panel of bacterial pathogens responsible for most drug-resistant infections including Staphylococcus aureus, Enterococcus spp., Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. The derivative of deflazacort, PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) showed the best antibacterial activity in a dose-dependent way. We focused on the action of PYED-1 against S. aureus cells. PYED-1 exhibited an additive antimicrobial effect with gentamicin and oxacillin against the methicillin-resistant S. aureus isolate 00717. In addition to its antimicrobial effect, PYED-1 was found to repress the expression of several virulence factors of S. aureus, including toxins encoded by the hla (alpha-haemolysin), hlb (beta-haemolysin), lukE-D (leucotoxins E-D), and sea (staphylococcal enterotoxin A) genes, and cell surface factors (fnbB (fibronectin-binding protein B) and capC (capsule biosynthesis protein C)). The expression levels of autolysin isaA (immunodominant staphylococcal antigen) were also increased.

14.
Antibiotics (Basel) ; 9(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131413

RESUMO

Stenotrophomonas maltophilia, an environmental Gram-negative bacterium, is an emerging nosocomial opportunistic pathogen that causes life-threatening infections in immunocompromised patients and chronic pulmonary infections in cystic fibrosis patients. Due to increasing resistance to multiple classes of antibiotics, S. maltophilia infections are difficult to treat successfully. This makes the search for new antimicrobial strategies mandatory. In this study, the antibacterial activity of the heterocyclic corticosteroid deflazacort and several of its synthetic precursors was tested against S. maltophilia. All compounds were not active against standard strain S. maltophilia K279a. The compound PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) showed a weak effect against some S. maltophilia clinical isolates, but exhibited a synergistic effect with aminoglycosides. PYED-1 at sub-inhibitory concentrations decreased S. maltophilia biofilm formation. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of biofilm- and virulence- associated genes (StmPr1, StmPr3, sphB, smeZ, bfmA, fsnR) was significantly suppressed after PYED-1 treatment. Interestingly, PYED-1 also repressed the expression of the genes aph (3´)-IIc, aac (6´)-Iz, and smeZ, involved in the resistance to aminoglycosides.

15.
Chemistry ; 26(12): 2597-2601, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31860145

RESUMO

A highly regio- and stereoselective route to d- and l-cyclohexenyl nucleosides has been devised, using the Tsuji-Trost reaction as the key step. Contrarily to the widely accepted mechanism (involving a net retention of configuration), the reaction proceeded in a highly stereoconvergent manner, providing cis nucleosides regardless of the relative configuration of the starting materials. DFT calculations confirmed the experimental data while suggesting the origin of the stereochemical reaction outcome.


Assuntos
Nucleosídeos/síntese química , Carbonatos/química , Catálise , Teoria da Densidade Funcional , Estrutura Molecular , Estereoisomerismo , Termodinâmica
16.
Trends Biochem Sci ; 44(12): 1022-1040, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31307903

RESUMO

Metalloproteins are crucial for life. The mutual relationship between metal ions and proteins makes metalloproteins able to accomplish key processes in biological systems, often very difficult to reproduce with inorganic coordination compounds under mild conditions. Taking inspiration from nature, many efforts have been devoted to developing artificial molecules as metalloprotein mimics. We have witnessed an explosion of protein design strategies leading to designed metalloproteins, ranging from stable structures to functional molecules. This review illustrates the most recent results for inserting metalloprotein functions in designed and engineered protein scaffolds. The selected examples highlight the potential of different approaches for the construction of artificial molecules capable of simulating and even overcoming the features of natural metalloproteins.


Assuntos
Metaloproteínas , Engenharia de Proteínas , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo
17.
Eur J Med Chem ; 175: 63-71, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075609

RESUMO

In the frame of a research program aimed to explore the relationship between chirality of iminosugars and their therapeutic potential, herein we report the synthesis of N-akyl l-deoxyiminosugars and the evaluation of the anti-inflammatory properties of selected candidates for the treatment of Pseudomonas aeruginosa infections in Cystic Fibrosis (CF) lung disease. Target glycomimetics were prepared by the shortest and most convenient approach reported to date, relying on the use of the well-known PS-TPP/I2 reagent system to prepare reactive alkoxyalkyl iodides, acting as key intermediates. Iminosugars ent-1-3 demonstrated to efficiently reduce the inflammatory response induced by P. aeruginosa in CuFi cells, either alone or in synergistic combination with their d-enantiomers, by selectively inhibiting NLGase. Surprisingly, the evaluation in murine models of lung disease showed that the amount of ent-1 required to reduce the recruitment of neutrophils was 40-fold lower than that of the corresponding d-enantiomer. The remarkably low dosage of the l-iminosugar, combined with its inability to act as inhibitor for most glycosidases, is expected to limit the onset of undesired effects, which are typically associated with the administration of its d-counterpart. Biological results herein obtained place ent-1 and congeners among the earliest examples of l-iminosugars acting as anti-inflammatory agents for therapeutic applications in Cystic Fibrosis.


Assuntos
Antibacterianos/uso terapêutico , Fibrose Cística/complicações , Imino Açúcares/uso terapêutico , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/isolamento & purificação , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Brônquios/imunologia , Brônquios/microbiologia , Brônquios/patologia , Relação Dose-Resposta a Droga , Humanos , Imino Açúcares/administração & dosagem , Imino Açúcares/química , Imino Açúcares/farmacologia , Inflamação/prevenção & controle , Concentração Inibidora 50 , Camundongos , Neutrófilos/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Estereoisomerismo , beta-Glucosidase/antagonistas & inibidores
18.
RSC Adv ; 9(37): 21519-21524, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521350

RESUMO

The synthesis of deflazacort (DFZ) and a preliminary evaluation of its microbial activity against the human pathogens Acinetobacter baumannii and Staphylococcus aureus is herein reported. While DFZ is inactive, one of its synthetic precursors showed a strong antibacterial activity against both Gram-negative and -positive bacteria.

19.
Front Chem ; 6: 590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564568

RESUMO

Manganese-porphyrins are important tools in catalysis, due to their capability to promote a wide variety of synthetically valuable transformations. Despite their great reactivity, the difficulties to control the reaction selectivity and to protect the catalyst from self-degradation hamper their practical application. Compared to small-molecule porphyrin complexes, metalloenzymes display remarkable features, because the reactivity of the metal center is finely modulated by a complex interplay of interactions within the protein matrix. In the effort to combine the catalytic potential of manganese porphyrins with the unique properties of biological catalysts, artificial metalloenzymes have been reported, mainly by incorporation of manganese-porphyrins into native protein scaffolds. Here we describe the spectroscopic and catalytic properties of Mn-Mimochrome VI*a (Mn-MC6*a), a mini-protein with a manganese deuteroporphyrin active site within a scaffold of two synthetic peptides covalently bound to the porphyrin. Mn-MC6*a is an efficient catalyst endowed with peroxygenase activity. The UV-vis absorption spectrum of Mn-MC6*a resembles that of Mn-reconstituted horseradish peroxidase (Mn-HRP), both in the resting and high-valent oxidized states. Remarkably, Mn-MC6*a shows a higher reactivity compared to Mn-HRP, because higher yields and chemoselectivity were observed in thioether oxidation. Experimental evidences also provided indications on the nature of the high-valent reactive intermediate and on the sulfoxidation mechanism.

20.
Chembiochem ; 19(17): 1823-1826, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29898243

RESUMO

Rational design provides an attractive strategy to tune and control the reactivity of bioinspired catalysts. Although there has been considerable progress in the design of heme oxidase mimetics with active-site environments of ever-growing complexity and catalytic efficiency, their stability during turnover is still an open challenge. Herein, we show that the simple incorporation of two 2-aminoisobutyric acids into an artificial peptide-based peroxidase results in a new catalyst (FeIII -MC6*a) with higher resistance against oxidative damage and higher catalytic efficiency. The turnover number of this catalyst is twice as high as that of its predecessor. These results point out the protective role exerted by the peptide matrix and pave the way to the synthesis of robust bioinspired catalysts.


Assuntos
Materiais Biomiméticos/química , Peptídeos/química , Materiais Biomiméticos/síntese química , Catálise , Heme/química , Ferro/química , Cinética , Mutação , Oxirredução , Peptídeos/síntese química , Peptídeos/genética , Peroxidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...